

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

A CHRONOLOGICAL ANALYSIS OF INDUSTRIAL DEVELOPMENT IN UZBEKISTAN OVER THE COURSE OF 500 YEARS

Qodirov Alisherjon Akmaljon o'g'li Rahimov School Fergana, Fergana, Uzbekistan, 2025

Abstrct

The research is aimed to explore Uzbekistan's industrial evolution - from medieval artisanal economies to contemporary reforms - examining historical limitations, post-independence transitions, and present development strategies, while projecting future growth driven by diversification, technological advancement, and deeper integration into regional and global economic systems.

Introduction

Most people can't even locate Uzbekistan on a map — and this is largely due to our country's lack of global influence. For more than a century, Uzbekistan was colonized and overshadowed by a larger neighbor - the Russian Empire, and later the Soviet Union. While countries like England, Germany, and France were undergoing waves of transformation — from the Industrial Revolution(circa 1760–1840) that mechanized textile production, metallurgy, and transportation, to political revolutions and socio-economic reforms that modernized their legal, educational, and healthcare systems to political upheavals in the early 20th century, and sweeping progress in economics, law, transportation, and healthcare — Uzbekistan remained on the periphery of global events with its development tightly controlled and directed by external powers. But that wasn't forever - with the collapse of the USSR in 1991 and emergence of new independent states -Uzbekistan finally acquired its desired independence and sovereignty in its economic and political decisions. This research will examine the historical evolution of Uzbekistan's industry — beginning with the feudal monarchies of the Middle Ages, which were based on a system of dehqans (landholding peasants) and mirabs (water managers) essential in the region's irrigated agriculture through the Khanates of Bukhara, Khiva, and Kokand, the colonial restructuring under Russian imperial rule, the intensive industrial policies of the Soviet planned economy, and finally, the postindependence transition to a market-oriented but stateinfluenced industrial economy under the modern Republic of Uzbekistan.

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

XIV- MIDDLE OF XIX CENTURY

During the 14th to 19th centuries, the territory of present-day Uzbekistan was a vital part of Central Asia's economic, cultural, and political fabric. This region flourished under successive empires and local monarchies, most notably the Timurid Empire, founded by Amir Timur

(Tamerlane) in the late 14th century. Under his reign, cities like Samarkand, Bukhara, and Shahrisabz transformed into renowned centers of trade, science, art, and architecture, attracting scholars, architects, and merchants from across the Islamic world, India, Persia, and even China (Manz, 2007).

Following the decline of the Timurid dynasty in the 15th century, the region fragmented into several smaller states such as the Khanates of Khiva and Kokand, and the Emirate of Bukhara. Despite political division, these states maintained vibrant local economies largely built on agriculture and traditional industries (Kamp, 2006).

Agricultural production remained the economic foundation, with extensive cultivation of cotton, wheat, barley, and melons, alongside vineyards and orchards producing raisins, apricots, and pomegranates for both local consumption and export. Silk production thrived, especially in the Ferghana Valley, where mulberry cultivation and sericulture supported a robust silk-weaving industry. The resulting fine fabrics—such as atlas and adras—were in high demand across Central Asia and exported via caravan routes (Bregel, 2003).

Manufacturing in the khanates and the emirate was predominantly small-scale and artisanal, organized around craft guilds (known as ustashilik in some regions) that regulated production standards, training, and trade. Workshops in cities like Bukhara, Samarkand, Khiva, and Kokand produced an array of goods: intricately woven carpets, hand-forged metal tools and weapons, copperware, ceramics, dyed textiles, jewelry, and leather products. Bukhara, in particular, was famed for its high-quality carpets and silk garments, while Khiva was known for producing durable knives, saddlery, and distinctive glazed tiles used in architecture (Soucek, 2000).

Urban bazaars and caravanserais facilitated the exchange of these goods, not only among local populations but also with merchants from Persia, India, China, and the Ottoman Empire. Caravan trade along the remnants of the Silk Road remained a critical economic activity, ensuring the steady flow of goods, ideas, and technologies (Levi, 2002).

Additionally, water management systems, such as ancient irrigation canals (aryks), supported intensive agriculture, which in turn sustained the growth of food-processing industries like flour milling, oil pressing, and wine and vinegar production (Kamp, 2006).

Despite these economic strengths, manufacturing remained largely based on manual labor and traditional techniques. There was little mechanization or large-scale industrial development, as conservative ruling elites and social structures resisted sweeping technological change. Innovation came slowly, and productivity depended heavily on skilled artisans and favorable agricultural conditions (Bregel, 2003).

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

By the late 18th and early 19th centuries, these local economies faced pressures from internal tribal conflicts and the growing influence of foreign trade networks, but they still preserved a rich manufacturing tradition that shaped the daily life and culture of the people in Central Asia.

MIDDLE OF THE 19TH CENTURY-1922

With the gradual expansion of the Russian Empire into Central Asia during the 19th century, the territories of present-day Uzbekistan entered a new phase of economic, political, and social transformation. Although local rulers of the Emirate of Bukhara, the Khanate of Khiva, and the Khanate of Kokand formally retained some autonomy under Russian protectorate arrangements, real power increasingly shifted to imperial administrators, merchants, and military authorities (Khalid, 2006).

One of the most significant changes introduced during this period was the integration of the region's economy into the broader Russian imperial market. The Russians sought to transform Central Asia into a raw material supplier for the industrializing empire. This led to a marked expansion in cotton cultivation, as imperial policy prioritized the production of raw cotton to reduce Russia's dependence on American imports (Becker, 2004). As a result, vast tracts of irrigated land were converted to monoculture cotton farming, especially in the Ferghana Valley and along the Amu Darya and Syr Darya rivers. Traditional food crops such as wheat and barley were neglected in many areas, which later contributed to periodic food shortages and dependency on grain imports from other parts of the empire (Spector, 2008).

In terms of technological advancement, the Russian administration introduced elements of modern infrastructure previously unknown in the region. The construction of the TransCaspian Railway in the 1880s, linking Central Asia to the Russian heartland, was a watershed development. This railway greatly facilitated the export of cotton and the import of Russian manufactured goods, breaking the dominance of the old caravan-based Silk Road system (Kamp, 2016). Urban centers such as Tashkent, which became the administrative capital of Russian Turkestan, grew rapidly in population and importance as a hub of imperial governance and commerce (Khalid, 2006).

Russian influence also brought early forms of mechanized industry, albeit limited and primarily serving military and administrative needs rather than local industrialization. In Tashkent and a few other cities, small cotton gins, oil presses, and brick factories were established. However, these enterprises were generally owned and operated by Russian settlers or state-backed companies, with limited participation or benefit for the indigenous population (Northrop, 2004).

At the same time, the traditional manufacturing sector — such as textile weaving, ceramics, and metalworking — faced increasing competition from cheaper, factory-made imports from Russia, and this contributed to the decline of some artisanal industries, especially those dependent on regional trade routes disrupted by new transport and market systems favoring imperial centers (Kamp, 2016).

Despite the appearance of modern infrastructure, technological education and industrial training for the local Muslim population remained minimal. Russian colonial policies largely excluded Central

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

Asians from higher administrative positions, technical schools, or large-scale industrial employment. As a result, the technological gap between the local populace and the Russian settlers widened, deepening socio-economic inequalities (Khalid, 2007). Moreover, irrigation projects initiated by Russian engineers aimed to expand cotton-growing lands, but they were often poorly planned or insufficiently maintained, leading to soil salinization and long-term degradation of arable land — a problem that would have lasting ecological consequences (Spoor, 1993).

In summary, while Russian imperial rule introduced railroads, mechanized cotton processing, and new connections to global markets, these changes were primarily designed to serve imperial interests rather than to foster local technological or industrial advancement. The traditional economy and manufacturing sectors stagnated or declined under the pressure of imported goods and restructured agricultural priorities, laying the groundwork for future economic challenges in the region.

USSR

This period was truly the start of industrialization in Uzbekistan. Following its formation in 1924, the Uzbek Soviet Socialist Republic (Uzbek SSR) became a strategic economic asset within the USSR's planned economy. The Soviet leadership pushed a dual agenda of centralized "industrialization" and "collectivized agriculture", embedding Uzbekistan within the Union's broader Five-Year Plans (1928–1941), aiming to reduce dependence on agricultural imports and harness Central Asia's resource potential (Ahmad Shah, 2014; UNDP, 2023).

Politically, Moscow asserted tight control by purging local elites(kulaki) and appointing loyal officials to enforce industrial targets. Massive collectivization merged smallholder farms into state (sovkhoz) and collective (kolkhoz) entities. By the late 1930s, Uzbekistan featured approximately 940 kolkhozes and 1,000 sovkhozes, with centralized appointments of "brigadirs" to manage production quotas (Ahmad Shah, 2014).

Key resource-control measures included nationalizing land and water and constructing monumental irrigation works—such as the Molotov Tashkent Canal (63 km), Stalin's Great Fergana Canal (270 km in 1939), and Mikoyen's Southern Fergana Canal (108 km)—which by 1938 boosted irrigated acreage eightfold to nearly 1.48 million hectares (Ahmad Shah, 2014).

By the 1960s, irrigated arable land had expanded by 2 million hectares, amounting to some 60% of Central Asia's total and facilitating China-level output growth (IntechOpen, 2016). This large-scale irrigation infrastructure was instrumental in intensifying cotton monoculture, reinforcing Soviet industrialization goals.

1.1 Heavy and Chemical Industry

The Uzbek SSR industrialized rapidly: by the 1950s–1970s, its industrial sector included heavy industries—chemicals, mining, machinery, power generation — as well as aviation and electronics (Wikipedia, 2025).

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

"Energy": Thermal plants in Tashkent (1971), Syr Darya (1975), Angren, Navoi; hydroelectric dams such as Charvak (1972) were built.

"Minerals & hydrocarbons": Geological exploration created coal, gas, oil, and non-ferrous metal hubs; Gazli gas (from 1961); Fergana oilfields and the Muruntau gold mine (opened 1969) emerged under First Secretary Sharof Rashidov's leadership.

1.2 Aviation and Mechanization

The "Tashkent Aviation Production Association" (TM3), relocated from Moscow in 1941, became a premier aircraft facility. Production included:

Ли-2 (licensed DC-3) from 1942

Ил-14 (1954)

Ан-8 (1957), Ан-12 (1962), Ан-22 "Антей" (1966)

Ил-76 (1973) and wings for AH-124 and AH-225, supporting all-Union aeronautical ambitions (Wikipedia, TM3). By the 1970s, TM3 employed around 30,000 workers and standardized spares for spares production facilities. Simultaneously, the republic mechanized cotton agriculture. ТашСельМаш (Tashkent Agricultural Engineering Plant) produced over 160 types of equipment—seeders, cultivators, sprayers—and advanced multirole, four-row cotton harvesters during the 8th–9th Five-Year Plans (1961–1975).

1.3 Light Industry and Infrastructure

Light industry (textiles, garments, leather, food processing) grew alongside heavy industry, benefiting from local raw materials. Post-1950s growth in garment factories across Namangan, Andijan, and Margilan reflected Soviet attempts to build self-sufficiency in consumer goods production. Urban infrastructure in Tashkent was rebuilt after the 1966 earthquake, becoming a model Soviet metropolis—metro, wide boulevards, housing for 100,000 families, modernist civic amenities—anchored by its industrial and scientific base ([en.wikipedia.org],[7]).

Impact on Environment: Ecological and Manufacturing

2.1 Ecological Consequences

The aggressive water-diversion model devastated ecosystems, leading to serious ecologic problems that last for decades:

The Great Fergana Canal and similar projects reduced river inflows to the Aral Sea, triggering a collapse from ~1100 km³ to nearly zero between 1960–1982, shrinking the lake by 92% by 2009 (Intech Open, 2016; Ahmad Shah, 2014).

Evaporation exceeded inflow by mid-1960s with annual level drops of 20 cm/year, rising to 80–90 cm/year in the 1980s.

Salinization afflicted ~60% of irrigated land, lowering yields by up to 60%, while wetlands and biodiversity were irreversibly damaged (Intech Open, 2016; MDPI, 2004). Pesticide and fertilizer overuse—common in cotton monoculture—contaminated soils and river systems. The Soviet cotton

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

scandal of the 1970s featured toxic agrochemical use that intensified soil depletion and environmental neglect (Wikipedia, cotton scandal).

2.2 Manufacturing Legacy

Despite industrialization's technological gains, inefficiencies plagued Soviet-era manufacturing: - Factories and mechanization plants struggled under outdated designs, rigid quotas, and poor integration.

Equipment often produced low-quality consumer goods and required centralized upkeep; management was bureaucratic and unresponsive.

Post-1991, many of these plants — built to serve "one-seat-republic-colony" mandates — had difficulty adapting to market conditions and global competitiveness (Wikipedia, Uzbekistan SSR economy). Additionally, industrial energy production in Soviet Uzbekistan heavily depended on large-scale thermal power plants and hydroelectric stations, many of which were constructed between the 1960s and 1980s without modern environmental safeguards or considerations for energy efficiency. Major facilities such as the Tashkent Thermal Power Station (commissioned in 1971) and the Syr Darya Thermal Power Station (1975) utilized low-efficiency steam turbine technology that required significant amounts of water for both cooling and steam generation processes ([wikipedia.com],[12]). These thermal plants primarily burned natural gas or locally mined coal, contributing substantially to greenhouse gas emissions, particulate matter pollution, and thermal water discharge, which negatively affected the surrounding air and water quality, particularly in industrial centers like Tashkent, Navoi, and Angren.

Hydropower development, exemplified by the Charvak Hydroelectric Station (1972), further contributed to environmental strain. While such projects supplied renewable electricity to growing urban and industrial populations, they also altered the natural hydrological cycles of the Amu Darya and Syr Darya rivers. These changes compounded the drastic reduction in river flow volume caused by widespread irrigation withdrawals for cotton monoculture, thus accelerating the desiccation of the Aral Sea and the collapse of downstream aquatic ecosystems (MDPI, 2004).

This reliance on large-scale, water-intensive, and fossil-fuel-driven energy infrastructure locked Uzbekistan into a path-dependent industrial model that prioritized production targets over environmental sustainability or technological modernization. The Soviet-era energy facilities left a legacy of aging equipment, low operational efficiency, and ecological damage, all of which have posed significant challenges for Uzbekistan's post-independence energy reforms and its transition toward more sustainable and diversified energy sources (MDPI, 2004).

3. Synthesis: Legacies and Reflections

Uzbekistan's Soviet-era industrialization was both transformative and tumultuous:

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

"Economic transformation": Uzbekistan leapt into modernity — aviation factories, mechanized agriculture, chemical works, power plants, and mineral extraction — anchored in Moscow's centralized vision.

"Technological progress": ТМЗ aircraft, ТашСельМаш harvesters, energy systems, and irrigation networks were technical showcases of Soviet planning.

"Environmental degradation": The relentless expansion of monoculture and irrigation led to the Aral catastrophe, rising soil salinity, water table collapse, and mass pesticide pollution. - "Industrial inefficiencies": Centralized apparatus produced a weak legacy of over-specialized, environmentally unsustainable, and bureaucratically inflexible enterprises.

This contradictory legacy left independent Uzbekistan with legacy infrastructure whose maintenance costs and ecological burdens still challenge economic modernization and environmental restoration. Efforts such as EBRD-supported retrofits of Soviet-era pumps in the Fergana Valley seek to balance productivity with sustainability (Ahmad Shah, 2014; IntechOpen, 2016).

ISLAM KARIMOV

Following Uzbekistan's independence in 1991, President Islam Karimov adopted a distinct, state-led economic model commonly referred to as the "Uzbek Model." It emphasized gradual transition from a command economy to a market economy, in contrast to rapid liberalization in neighboring post-Soviet states. The model was underpinned by five principles: strong state control, priority for social stability, phased privatization, import substitution, and active state intervention in strategic sectors (Ruziev, 2021).

Upon rising to power as First Secretary of the Uzbek Communist Party in 1989, Karimov led Uzbekistan through independence in December 1991. In the December 1991 presidential election, he secured 87.1% of the vote amid a nascent alternative opposition. The Communist Party was rebranded as the People's Democratic Party (PDPU), but Karimov retained effective control over state institutions (Wikipedia, n.d.).

Between 1995 and 2002, a combination of referendums and laws solidified Karimov's presidential power. A referendum in March 1995 extended his term to 2000, claiming 99.6% approval amid allegations of vote manipulation. Legal restrictions on religious and political organizations, notably in 1996 and 1998, curtailed independent activity. Following the 1999 Tashkent bombings, security legislation suppressed Islamic "extremism," enabling mass arrests and media censorship. Karimov crafted a dense vertical power structure: all bureaucratic levels directly reported to him, while informal clan balancing managed regional elites (Robert Cutler, 2018; SWP Berlin, 2018).

A key limitation of this model was the restricted space for private entrepreneurship and foreign investment. Local entrepreneurs faced numerous regulatory hurdles, currency convertibility issues, and limited access to capital, which hindered the growth of independent small and medium-sized enterprises (SMEs). Additionally, foreign companies encountered significant barriers to entry. The complex licensing system, lack of legal transparency, and import restrictions made it difficult for

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

international businesses to operate in Uzbekistan or bring foreign products to market. This limited technology transfer and competition, concentrating industrial development in state-controlled sectors (Ruziev, 2021).

Karimov maintained a gradualist, state-directed economic strategy, prioritizing industrial diversification while preserving state control over key sectors such as energy, chemicals, and manufacturing. Privatization efforts from 1993 onward focused on small and medium enterprises, with strategic industries remaining under state ownership (Ruziev, 2021; Mukhitdinova, 2024). A central element of industrial policy was planned sequencing of investments to generate backward and forward linkages. The development of hydrocarbon processing plants near gas sources exemplified this approach, allowing domestically sourced feedstock to stimulate downstream industrial growth (Ruziev, 2021).

Commissioned in 2001, the Shurtan Gas Chemical Complex in the Kashkadarya region became one of Uzbekistan's flagship state industrial projects and a model for vertically integrated resource processing. The complex processes natural gas from the Shurtan field into polyethylene, liquefied gas, and gas condensate, creating essential raw materials for downstream industries such as plastics, construction, packaging, and textiles (Ruziev, 2021; UzDaily, 2024). - Production Technologies: The plant was equipped with CB&I Lummus Global's cracking and ethylene technologies and Chevron Phillips Chemical's polyethylene production units.

- Output: As of 2023, the factory processed over 4.15 billion m³ of natural gas, yielding 131,900 tons of polyethylene and 114,800 tons of gas condensate (UzDaily, 2024).
- Infrastructure: In-house storage and pipeline systems, a power substation, and railway links integrated the plant with national logistics systems.
- Renewables: In 2017, Presidential Decree No. PP-2965 approved expansion projects and integration of solar power, including 600 kW of rooftop PV and 1.1 MW solar panels over parking lots (Trend, 2023).

Launched in 2016 near Kungrad, the Ustyurt Gas Chemical Complex became

Uzbekistan's largest single industrial investment (US \$4 billion). It processes gas from the Surgil field into ethylene, polyethylene, and polypropylene. Technologies were provided by Samsung Engineering, KOGAS, and Lotte Chemical. The facility enabled Uzbekistan to begin exporting polymers to Turkey, China, and Europe (Ruziev, 2021).

Though completed post-2016, planning and foreign agreements occurred under Karimov. The plant converts natural gas to Euro-5 synthetic fuels, reducing fuel imports. It uses technologies from Sasol, Haldor Topsoe, and Chevron. With an expected output of 1.5 million tonnes per year, it reflects Uzbekistan's clean energy ambitions.

The automotive sector began with Uz-DaewooAuto in Asaka (1996), a joint venture with South Korea's Daewoo Motors. Initial models included the Tico, Nexia, and Damas.

- Localization Drive: By the mid-2000s, production of bumpers, wiring, and glass was localized in the Fergana Valley.

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

- Modernization: After Daewoo's bankruptcy, GM Uzbekistan (2008) expanded with new equipment and models. By 2016, annual production exceeded 220,000 vehicles, including Cobalt, Spark, and Malibu. Regional suppliers were established in Samarkand and Tashkent (UzAuto Motors, 2025).
- State Holdings: Uzbekneftegaz and Uzkimyosanoat managed energy and chemical assets. Presidential Decrees: Legal basis for Shurtan expansion and GTL investment, including tax incentives and technology import licenses (President's Office, 2018).
- Technology Licensing: Global standards ensured by importing systems from Chevron, Sasol, CB&I, etc.
- Green Policies: Legal support for energy efficiency and solar integration in factories (Trend, 2023). Factories under Karimov not only drove domestic manufacturing and employment but also embedded technological learning through foreign partnerships. These became the foundation of Uzbekistan's future export diversification and green industrial policies.

Factory/Complex	Year Started	Primary Output	Key Technologies	Economic Role	
Shurtan Gas- Chemical	2001	Polyethylene, gas condensate	Chevron Phillips, CB&I	Import substitution, downstream growth	
Ustyurt GCC	2016	Polyethylene, polypropylene	Samsung, KOGAS	Export-oriented manufacturing	
Uzbekistan GTL	2022	Synthetic fuels	Sasol, Topsoe, Chevron	Fuel independence, clean energy	
UzAuto Motors (Asaka)	1996	Cars, vans	Daewoo, GM	Consumer goods, export base	

SHAVKAT MIRZIYOYEV

Following the death of President Islam Karimov in 2016, Shavkat Mirziyoyev assumed office as interim president and was elected president later that year. His leadership marked a shift from strict centralism to cautious liberalization, ushering in a new phase of economic openness and reform. Mirziyoyev moved to dismantle many of the opaque institutional controls of the Karimov era, calling for government transparency, private sector empowerment, and global economic integration. Key political shifts included: diminishing the role of the National Security Service (SNB), previously a dominant institution under Karimov; reforming the Ministry of Justice and judiciary to improve legal transparency; establishing the Agency for Public Services and the Anti-Corruption Agency to promote accountability. Economically, Mirziyoyev committed to a developmental state strategy based on: market liberalization; currency convertibility (achieved in September 2017); improved climate for foreign direct investment

(FDI); strengthening small and medium enterprises (SMEs).

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

Mirziyoyev's tenure focused on transitioning Uzbekistan toward a globally integrated and competitive industrial economy. A wave of new laws was passed to liberalize trade, remove tariffs, and attract capital. The Law on Investments and Investment Activity (2019) consolidated protections for foreign investors and enabled the creation of Special Economic Zones (SEZs).

The entry of major multinational corporations, such as "Coca-Cola", "Hyundai", "Huawei", and "Lukoil", significantly increased competition in domestic markets. Foreign firms brought advanced technologies, marketing strategies, and logistical efficiency, pushing local companies to modernize, improve quality, and reduce prices to maintain competitiveness. As a result, consumers benefited from a broader selection of goods and services, while industries experienced technological spillovers and heightened innovation pressure.

Major capacity expansions were conducted at:

- "Shurtan Gas Chemical Complex", where production of polyethylene and polyvinyl chloride (PVC) was upgraded.
- "Ustyurt GCC", which integrated advanced automation.
- Completion of the "Uzbekistan GTL plant" in 2022, producing over 1.5 million tons/year of Euro-5 synthetic fuels.
- GM Uzbekistan rebranded as "UzAuto Motors" and modernized with automation and e-vehicle assembly.
- Introduction of "Chevrolet Onix", "Tracker", and electric vehicles.
- Localization exceeded 50% in key components by 2024.
- "Presidential Decree No. PF-6017 (2020)" launched Uzbekistan's Green Economy Strategy. Development of "solar and wind power plants" in Navoi, Bukhara, and Jizzakh in collaboration with Masdar (UAE) and ACWA Power (Saudi Arabia).
- Implementation of "energy efficiency upgrades" in industrial zones and government buildings. "Ministry of Investments and Foreign Trade (MIFT)" was restructured for investor services. The "Development Strategy of New Uzbekistan (2022–2026)" outlined priority sectors, export targets, and innovation policies.
- Creation of "Uzbek Industrial and Construction Bank" to fund industrial SMEs.

Year/Metric	FDI Inflows (USD)	Industry GDP share	Number of SEZs	Electricity from renewables	Car exports
2016	\$1.6 billion	26%	3	<1%	0
2023	\$8.1 billion	33%	23	>10%	28,000+

Uzbekistan saw an average GDP growth of 5–6% (post-COVID recovery), with industry, construction, and logistics as key growth drivers. Despite the progress, Uzbekistan faces structural challenges:

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

- Heavy dependence on resource sectors.
- Logistical bottlenecks in remote regions.
- Workforce skill gaps in high-tech manufacturing.

Yet the reforms under Mirziyoyev have transformed Uzbekistan into a regional industrial hub with a diversified portfolio spanning petrochemicals, metallurgy, automotive, electronics, and green technology.

CONCLUSION

Many things have been achieved so far; a lot of political reforms have changed Uzbekistan as we know it — especially the giant leaps toward a free-market economy and more transparent governance. These transformations have opened the door to greater foreign investment, entrepreneurship, and institutional accountability. The country's active engagement in regional diplomacy and infrastructure development signals a promising new era of openness and ambition. However, despite this progress, several challenges remain on the horizon. Ensuring the independence of the judiciary, reducing bureaucratic red tape, and fully protecting property and civil rights are essential for long-term investor confidence and public trust. Similarly, while economic liberalization has gained momentum, youth unemployment, education quality, and technological innovation still require focused attention to build a truly competitive and inclusive economy. Reflecting on this journey, it is clear that Uzbekistan is no longer a passive observer of history, but an active architect of its industrial future. With sustained commitment to reform and innovation, our nation is steadily advancing toward the vision of a "Yangi O'zbekiston"— a vision deeply embraced by our youth. As a member of the new generation, I firmly believe that Uzbekistan is on the right trajectory to join the ranks of the next Asian Tigers.

REFERENCES

- 1. Bregel, Y. (2003). An Historical Atlas of Central Asia. Brill.
- 2. Kamp, M. (2006). The New Woman in Uzbekistan: Islam, Modernity, and Unveiling under Communism. University of Washington Press.
- 3. Levi, S. C. (2002). The Indian Diaspora in Central Asia and Its Trade, 1550–1900. Brill.
- 4. Manz, B. F. (2007). Power, Politics and Religion in Timurid Iran. Cambridge University Press.
- 5. Soucek, S. (2000). A History of Inner Asia. Cambridge University Press.
- 6. Becker, S. (2004). Russia's Protectorates in Central Asia: Bukhara and Khiva, 1865–1924. Routledge.
- 7. Kamp, M. (2016). The New Woman in Uzbekistan: Islam, Modernity, and Unveiling under Communism. University of Washington Press.
- 8. Khalid, A. (2006). The Politics of Muslim Cultural Reform: Jadidism in Central Asia. University of California Press.
- 9. Khalid, A. (2007). Islam after Communism: Religion and Politics in Central Asia. University of California Press.

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

- 10. Northrop, D. (2004). Veiled Empire: Gender and Power in Stalinist Central Asia. Cornell University Press.
- 11. Spector, R. H. (2008). Order at the Bazaar: Regulation and Commerce in Central Asia under Russian Rule. Central Asian Survey, 27(3–4), 293–312.
- 12. Spoor, M. (1993). Transition to market economies in former Soviet Central Asia: Economic and ecological contradictions. The Journal of Development Studies, 29(3), 103–120.
- 13. Ahmad Shah, I. (2014). Soviet agrarian reforms and production in the Socialist Republic of Uzbekistan. 'International Journal of Russian Studies'.
- 14. Intech Open. (2016). Sustainability of irrigation in Uzbekistan: Implications for women farmers.
- 15. MDPI. (2004). Reconstructing the spatio-temporal development of irrigation systems in Uzbekistan using Landsat time series. 'Remote Sensing', 4(12), 3972.
- 16. UNDP Uzbekistan. (2023, September 12). Farmers of Fergana region learn innovative methods of growing water-saving varieties of cotton.
- 17. Wikipedia. (2025, April). 'Tashkent'.
- 18. Wikipedia. (n.d.). 'Tashkent Mechanical Plant'.
- 19. Wikipedia. (n.d.). 'Uzbek Soviet Socialist Republic'.
- 20. Wikipedia. (n.d.). 'Uzbek cotton scandal'.
- 21. Wikipedia. (n.d.). 'Great Fergana Canal'.
- 22. Wikipedia. (n.d). 'Syr Darya Thermal Power Station'.
- 23. Wikipedia. (n.d). 'Charvak Hydroelectric Station'.
- 24. President's Office of Uzbekistan. (2018, December 13). "A unique factory is being built in Shurtan".
- 25. Ruziev, K. (2021). "Uzbekistan's development experiment: An assessment of Karimov's economic legacy". ResearchGate.
- 26. https://www.researchgate.net/publication/350003110
- 27. Robert Cutler. (2018). Post-Soviet Uzbekistan's political regime transformation. MGIMO Journal. https://robertcutler.org
- 28. SWP Berlin. (2018). Uzbekistan under Karimov: Political and economic stability at the cost of freedom. https://swp-berlin.org
- 29. Trend.Az. (2023, August 31). "Uzbekistan installs solar photovoltaic plant at Shurtan Gas Chemical Complex".
- 30. https://en.trend.az/business/energy/3791942.html
- 31. UzAuto Motors. (2025). "Company profile and production statistics".
- 32. https://uzautomotors.com/en
- 33. UzDaily. (2024, June 1). "Shurtan gas chemical complex produced products worth 3.37 trillion soums in 2023". https://uzdaily.uz/en/post/87526

Business Development

ISSN: 2980-5287

Volume 01, Issue 10, October 2025

Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

34. UzDaily. (2024, February 2). "Shurtan gas chemical complex produces localized products worth 16.2 billion soums in 2023".

[https://uzdaily.uz/en/post/85101] (https://uzdaily.uz/en/post/85101)

- 35. Wikipedia. (n.d.). Islam Karimov. https://en.wikipedia.org/wiki/Islam_Karimov
- 36. ADB. (2023). "Uzbekistan Country Report". https://adb.org
- 37. Ruziev, K. (2021). "Uzbekistan's development experiment: An assessment of Karimov's economic legacy". ResearchGate. https://www.researchgate.net/publication/350003110
- 38. UzDaily. (2024, June 1). "Shurtan gas chemical complex produced products worth 3.37 trillion soums in 2023". https://uzdaily.uz/en/post/87526
- 39. UzAuto Motors. (2025). "Company profile and modernization plans". https://uzautomotors.com/en
- 40. World Bank. (2023). "Uzbekistan Economic Update". https://worldbank.org/en/country/uzbekistan
- 41. Presidential Administration of Uzbekistan. (2019). "Decree No. PP-4512 on Industrial Localization".
- 42. Presidential Administration of Uzbekistan. (2020). "Green Economy Strategy PF-6017".