

INNOVATIVE AND RESEARCH AND PRODUCTION POTENTIAL OF THE AGRARIAN SECTOR: FINANCING

Babadjanov Abdirashid Musayevich

PhD, katta ilmiy xodim, Toshkent amaliy fanlar universiteti

"Bank va moliya" kafedrasи dotsenti

Abstract

This article reveals the main content of innovative and scientific and production potential of the agrarian sector, sets out approaches to its structure, theoretical, methods and methodological foundations of innovation are studied, scientific potential corresponding to the strategy of innovative development of the country's economy is emphasized, production potential and financial issues of agriculture are considered. The relationship between the financing of each type of agriculture and the total amount of funds spent is considered. In addition, the farm and peasant farm require an efficient source of financing.

The study of the innovative potential of agrarian production will allow analyzing the efficiency of resource use in order to achieve sustainable and effective socio-economic growth in the country's agrarian sector, develop and substantiate recommendations when making decisions under the conditions of limited resources. The fact is that government spending on agricultural finance is likely to be at a very high level, which is accompanied by a significant positive correlation of industry performance.

Keywords: Agrarian sector, innovation potential, scientific potential, production potential, intellectual, agricultural financing, development, economy, improvement.

Introduction

The rational policy being implemented in our country on the basis of large-scale reforms provides a solid basis for the comprehensive development of agriculture through the solution of its global problems, uninterrupted supply of food products to the population, increasing the innovative and scientific production potential of the agricultural sector, as well as export potential.

"The strategy for radical improvement of the integration of science, education and production, the strategy for innovative development of the agrarian education system until 2030 and its implementation" is provided [1].

The main factor for sustainable development of rural areas is the development of innovative potential of agricultural enterprises.

In studying the content of innovative potential, Russian scientists D. I. Kakurin notes that they refuse to interpret it as a simple set of resources, since equal economic resources in different use conditions are not a guarantee of the same economic results [2].

In order to make effective use of the potential of production in agriculture, the following key objectives must be observed: integrity - the full provision of production with all kinds of resources necessary to solve problems; proportionality - the correspondence between individual elements of production with an acceptable quantitative ratio of a particular structure; norms - the application of scientifically based norms of resource costs for the production or production of a work unit; Expediency - to gather the necessary resources in solving specific tasks, taking into account all objective conditions.

Scientific potential development is the most important national source and basis for innovative modernization of the country's economy. Effective organization of research work, use of scientific knowledge ensures the competitiveness of the economy in high-tech markets. The most important indicator of scientific potential is the volume and quality of the already accumulated scientific knowledge, as well as the degree of readiness to apply it in practice. Scientific potential also depends on the structure and organization of research and development management, the intensity of efforts to solve the most pressing problems, the degree of specialization between research institutes.

V.I. Abramov believes that such a method of assessing innovation potential as an index analysis is aimed at creating an economic and mathematical model of

innovation potential of an innovator, taking into account the assessment of his abilities, knowledge, abilities and ideas [3].

The level of financing for scientific research in the agrarian sector, its optimal sufficiency are an important condition and factor for the effective operation of agricultural scientific potential. This level should be such that it allows for a successful solution of the tasks posed to agrarian science. It is the most important element of the mechanism for the operation of the field, and its quantitative expression must be limited and conform to certain proportions determined by the science policy of the state. In the future, while maintaining a variety of sources of financing, the priority of financing from the state budget should be ensured by targeted orientation of the use of allocated funds. Funds should be allocated not for the scientific institution, but for the implementation of certain scientific and technical programs and the solution of individual problems. At the same time, some of the resources need to be developed and implemented from technological innovations to institutional and organizational innovations.

Thus, agrarian science should become the basis of scientific potential of the country's leading agricultural economies in ensuring the innovative development of this sector. The most comprehensive method from the point of view of parametrization is the Imaykina method, which has provided indicators for assessing the innovation potential in terms of its components [4].

The development of agrarian science and the introduction of scientific developments into production is equivalent to the stability of the agrarian economy. It is necessary to ensure continuous and continuous research work in the agricultural sector, effective use and development of innovative and research potential of agriculture.

A significant increase in the use of the productive potential of agriculture is one of the most important conditions for satisfying the country's needs for food and raw materials, ensuring food security and increasing the efficiency of this important sector of the national economy.

Intensive and sustainable development of the agrarian sphere is largely determined by the efficiency of innovation. The urgency of the problem is that the development of innovations will provide for continuous updating of the technological, technical, organizational and economic base of agricultural production, obtaining competitive products.

Literature Review

The country is an innovative economy based on the flow of innovations in the agrarian sector, continuous technological improvement, production and export of high-tech products with added value, and technology itself.

Innovation and research and production potential, as well as its position position play an important role in the economic development of the sector. They are the means of production that make up the productive assets, a part of the national wealth, and the entire economic potential of a country.

Currently, the trends in the development of agriculture are largely related to the transformation of industry on the basis of innovation. Opportunities for innovative modernization of the economy of the agrarian sector rely primarily on innovative potential. Accordingly, the study of the content and structure of innovation potential is the key not only to the formation of a coherent and non-contradictory theory of innovation management, but also to the effective practical management of innovation activities in agriculture.

New trends in the sphere of science and the decrease in the potential of scientific personnel in the use of its scientific potential; the existence of hidden unemployment among scientists; an increase in the number of highly qualified scientists working outside of science; increase in part-time work processes; R&D potential; lack of social protection and necessary conditions for scientists to act. In the modern conditions, the relevant legislative and economic supports that provide effective development of intellectual activity of participants in the innovation process and assessment of their work at the level of developed countries of the world have not yet been created.

The material incentives of scientific ideas in the field, that is, scientific activities, were evaluated from the point of view of state interests rather than its market value and opportunities to increase the cost efficiency of scientific development.

Many scientists who acquire scientific developments, that is, new varieties, and receive certificates confirming the intellectual property rights on them, cannot sell their innovations, because in fact their owner is the organization in which they work. To some extent, this prevents the process of commercialization of innovations and the effective use of the scientific potential of scientists. It is important to note that the patent formulation methodology also needs to be improved.

It can serve to intensify innovative activities in the agricultural sector and form funds for more effective use of the scientific potential of scientific personnel in the Republic.

The potential of the republic in the agrarian sphere and financing of agriculture were implemented by foreign and local scientists in their scientific work.

Kulagina says that such a method is directly based on an assessment of the effectiveness parameters of innovative potential. Scientific potential implies the need to analyze the results of the implementation of the method. The production potential allows objectively determining the efficiency of innovative production [5].

According to Pavlovani, in the research of most scientists, the definition of "innovative potential" is determined by the conceptual conditions for innovative development. At the same time, in the process of methodological and empirical research, the interpretations of the term have been expanded and refined several times, with the result that important content of the term is often of an opposing character [6]. As the Russian scientist Ushachev notes; Innovation potential is defined as a combination of different resources, including material, financial, intellectual, scientific, technical and other resources necessary for innovative activities in agricultural production [7].

Erina says that scientific information, information about innovation and innovative activities is a source of innovative activity that includes scientific schools and their role in national, world science [8].

Sozaeva, growth prospects of the enterprise, scientists and specialists are able to solve analytical and conceptual problems for further development of the organization [9]. Shubaeva says that methodologically, it should be understood as a certain reserve of the most important qualities of production potential. It is no coincidence that scientists actively support the idea of the efficiency of investment in productive capital for continuous development, improvement and rational use. Ultimately, all this increases the quality of production potential, regulates market processes in the agrarian resource market system [10].

Molchanenka argues that the concept of quantitative and qualitative precision of agricultural production potential, on the one hand, agrarian relations is a manifestation of the specific features of the object under study [11].

In our opinion, the potential of the agrarian sector is necessary not only in terms of the accumulation of the necessary innovation resources, necessary for the implementation and application of scientific results of agricultural activity. It is also necessary to ensure continuous financing for agriculture.

Research shows that innovation is the foundation of a for-profit organization's

sustainable economic growth. But significant financial resources are needed to pursue goals based on the development of scientific and technical production. Most agricultural organizations do not have their own resources and cannot access loans. One of the forms of increasing the sustainable production potential of agricultural organizations is the specialization of production.

Methods

Production indicators in the agrarian sector are affected by many factors, so almost everywhere they are replaced by effective solutions, grounded methods and expert rule. Effective solutions for the industry differ from the most optimal solutions because they provide the most optimal socially beneficial outcome.

Land is the country's wealth and primary source, as well as the main foundation for the development of agriculture and all sectors, and the main productive resource of the agrarian sector [12].

There are two main ways to find effective solutions in agriculture:

- the first method, change of control actions, design of agricultural food systems, development of real-time organizational and economic mechanisms, analysis of the result, and correction of previous decisions at the next stage;
- The second method is to find the mathematical equivalent of a real system or algorithm – to create an economic and mathematical model using well-designed methods and algorithms to find the best solutions.

In both the first and second cases, the subject performing these functions needs serious intellectual effort.

In the first case, an unconventional analysis of monitoring data, an assessment of the response surface of the economic system for traffic control, this information should be used for the next stage, maximizing the performance criterion set for the system.

In the second case, the movement should be directed towards the development of model tools and the development of a computer system of best control.

In agrarian science, there are three main ways to assess production potential, which are optimal from the point of view of specific practice: value, index, and score.

Evaluation of production potential, analysis of existing possibilities for materializing an idea or assessment of the technical feasibility of bringing an idea to the stage of readiness for use or sale of an idea.

Methods for determining the value of production potential. The most commonly used

value method involves determining the value of each of the potential elements, and then the total value of the production potential. The cost of fixed assets is calculated at the annual average value determined using the replacement cost, taking into account their depreciation.

There are five main ways to determine the value of production potential: the equivalent method; functional method; correlation method; value method; mixed or combined method.

The equivalent method involves estimating production potential in the form of the value of any of its elements, to which other elements of potential are applied using special coefficients. This method is based on the properties of interchange of elements. This method makes it possible to express the value of production potential in general as the value of one of its elements.

The functional method assumes that the value of the production potential is equal to the volume of the product produced, and the values of its individual elements are determined by the specific weights of the products that are decisive in the production of these elements. This method of estimation of production potential is the simplest and most accurate.

The correlation method involves the use of different correlation and regression models to determine the value of production potential. This method can generally be used to determine the capacity of the national economy and its industries to produce certain types of products.

The most commonly used value method involves determining the value of each element of the potential, and then the total value of the production capacity. Using the value method, it is possible to determine the structure of the production potential of an enterprise, which is the ratio expressed as a percentage between the value of the individual resources that make up the production potential and its total value.

The mixed or combined method involves combining values and other methods to determine the value of production potential.

Index method for assessing production potential. The index method of assessing the production potential of agrarian enterprises deserves special attention. Its essence is that each element of the productive potential of a particular enterprise is compared with the average cost of the same element, but in relation to the total number of enterprises studied.

Method evaluation of production potential points. The scoring method of estimating

production potential is sometimes used in agricultural enterprises. Its essence is to determine the total number of hectares, which corresponds to the physical area of agricultural land and the cadastral valuation index of the land.

The simplest way to determine the amount of productive potential of the agrarian sector is the method of valuation of agricultural land. Its essence is to find the total number of points calculated by multiplying the physical area of agricultural land by the cadastral value of land for each agrarian enterprise, the territory as a whole or for the Republic. This method shows the potential depending on the quantity and quality of the land, which is the basis of agricultural production.

Zambrzhiskaya notes that the next stage of the proposed method of assessing production potential (after determining the composition of indicators describing the use and effectiveness of fixed assets) is the establishment of coefficient-weights on these indicators. Weights reflect the importance of a particular indicator, and this potential is directly determined by the analyst, whether it is a buyer, investor, or third party [13].

These methods are directly related to the productivity of agricultural production. At this stage, the problem of implementation of the program for the development of rural production sector becomes acute, which cannot be solved without identifying all the available resources and capabilities of agricultural enterprises. In this regard, the choice of a methodology for assessing the total production potential is very important from the point of view of theory and practice.

Conclusion and Discussion

The economic life cycle of all enterprises operating in the agrarian sector is considered as an important component of assessing innovative potential and determining its competitiveness, and the result of using the existing economic potential is the basis for its further development.

Agrarian innovation potential is a part of the economic potential of agriculture, it is based on the availability of resources and is linked to economic potential with all its components, characterizes the opportunities of the enterprise to carry out innovative activities, ensures that the enterprise adapts to the changes in the external environment, and implements an innovation strategy.

The study of the innovative potential of agricultural production will allow analyzing the effectiveness of its use in conditions of limited resources to achieve sustainable

and effective socio-economic growth of the agro-industrial complex of the regions, develop recommendations and substantiate them when making decisions. Innovation policy defines limitation of external and internal order, formation of innovative potential.

The innovative potential of the technological sphere of agricultural production should be considered as a set of tools existing and newly introduced in agro-industrial production, created on the basis of commercialization of scientific knowledge and achievements of scientific and technological development, the impact of which on agrarian production is formed in the process of implementation of innovative technologies.

We distinguish the next classification of approaches to assessing the innovative potential of economic entity by target installation. This approach means that all assessment methods are to some extent focused on assessing how an enterprise's innovative potential contributes to the achievement of its goals.

According to the criterion of purpose, it consists of two approaches:

- within the framework of the internal goal, the envisaged, evaluated innovative potential is primarily aimed at achieving the goals of the organization, the potential of which is studied;
- the innovative potential, which is envisaged by the external goal, is primarily aimed at achieving the goals of the external environment of the organization, that is, increasing the standard of living in the area where the organization is located.

As a result of the study, a classification of the approach by logical direction is proposed. Within this classification, three main approaches stand out:

- A positive approach is that the results of the assessment allow us to draw conclusions about the level of development of innovative capacity in accordance with the following maxim: the higher the results of the assessment, the higher the level of innovation potential and its use has a positive impact. Most of the work follows this approach;
- an indicative approach is to determine such values of these indicators, which in this context indicate that existing methods of management are incapable of creating innovations. Methods of the indicative approach are characteristic for determining the level of economic security, but such methods are hardly used in the assessment of innovative potential;

- a unified approach assumes the use of indicative approaches to assess the existence of the necessary conditions for managing innovation potential, first, and then positive approaches to assess the level of development of innovation potential.

We propose to distinguish three groups of positive indicators of innovation potential assessment: entry, output, and experiential indicators.

The first group, input-indicators reflect the availability of internal resources of the enterprise and the availability of external opportunities forming its innovation potential.

The second group describes the results of the enterprise obtained with the help of innovative potential.

The third group, the experimental indicators of which will allow you to determine the effectiveness of operations with innovative potential.

The basic concept of this category of indicators is management decisions on innovation potential aimed at changing the qualitative and quantitative characteristics of innovation potential and its components, as well as using it to achieve certain results. In other words, it is the selection of a specific set of operations that has innovative potential among an alternative or combined set of valuations.

In terms of innovation, the indicators describing the external environment of the enterprise and the development of innovative potential are determined. Such indicators are the ratio of agricultural products to substance and the coefficient of market sensitivity to innovative products. It can be noted that to date, a sufficiently structured methodological framework for assessment and management of innovation potential has not been developed, therefore, approaches based on holistic qualitative indicators describing innovation potential are needed.

The innovation environment of an organization consists of innovation climate (one of the factors of attractiveness of the innovation market), which evaluates the state of its internal environment (one of the factors of competitiveness and competitive advantage) and the state of the external environment (one of the factors of attractiveness of the innovation market) innovation potential [14].

Although a number of measures aimed at increasing the scientific potential of scientific institutions lead to positive results, the training of personnel in this area and their qualifications related to professional scientific research do not provide a sufficient level. One of the main reasons for this is the decrease in the level of funding

for scientific work, the lower monthly salaries of researchers compared to other sectors of the economy.

The research work carried out is in most cases coordinated at the request of the customer. The effectiveness of the use of existing scientific potential must meet the demand for the implementation of scientific solutions today.

Zvolinsky believes that for the industry to be effective, market participants must acquire informational and legislative and economic knowledge, as well as be provided with scientific resources. In this case, scientific potential serves as one of the tools of labor market regulation [15].

The total number of employees working at the Research Institute of Irrigation and Water Problems is 104 people, and the number of researchers is 58 people. The number of employees with scientific degrees is 33 people or 0.0 percent, including 11 doctors of sciences or 19.0 percent, candidates of sciences 10 or 17.0 percent, and doctors of philosophy (PhD) in technical sciences 12 or 21.0 percent. The total number of employees without a degree is 25, or 43.0%. The low number of researchers with highly qualified scientific degrees among the research staff, which of course adversely affects the results of the research being conducted. At the moment, the scientific potential of the institute is 50 percent.

The scientific level of the Research Institute of Irrigation and Water Problems together with professors and teachers in the higher educational institution, where agricultural workers are trained, should form the basis of the system of scientific support of water management.

In this direction, the scientific potential of researchers at the Research Institute of Irrigation and Water Problems is noteworthy. We found it necessary to analyze this potential as well. Currently, the number of Doctor of Science (DSc) and Doctor of Philosophy (PhD) defended at the Research Institute of Irrigation and Water Problems is 33 people, of which, in 2018, 6 people were Doctor of Philosophy (PhD), in 2019 7 people, of which, Doctor of Science (DSc) 1 person, Doctor of Philosophy (PhD) 6 people, and in 2020 18 people, of which, Doctor of Science (DSc) 2 people, Doctor of Philosophy (PhD) 6 people.

In conclusion, it should be noted that it is of great importance to increase the level of doctors and doctors of philosophy among researchers and doctoral students conducting research in the fields of our country, to improve the quality of research

works, to improve the efficiency of networks in general and to ensure the development of the industry on a scientific basis.

In our opinion, in order to provide scientific institutions with qualified scientific personnel with scientific degrees, effective management of the scientific potential of agriculture and water management, it is expedient to revise the structure, material base, rights and obligations of research institutes, as well as the system of their financing.

In agriculture, productivity indicators of the use of productive potential can perform a number of functions, notably measuring, incentivizing and regulating. The measurement function describes management outcomes and serves as a basis for improving the evaluation of various aspects of the economic mechanism.

At the same time, it is possible to solve the following economic problems: estimation of the productive potential of farms and regions, determination of the volume of total resources of networks and farms; carry out a generalization assessment of the conditions and effectiveness of the use of common resources; improving the efficiency and evaluation of agricultural production. An effective indicator of production can serve as a criterion and they can be gross product, net income, profit. The stimulating function of indicators of production potential will help determine stocks in the farm. This will serve as a basis for finding ways to rationally use production resources, sell stocks. The incentive function of production capacity indicators helps in better estimation of price ratios by product zones and types.

The whole system of economic relations should be built on a normative basis, which will ensure the unconditional growth of economic relations and the achieved efficiency for society as a whole. The basis of calculations between farms should be based on objective regulatory factors - each farm, the capabilities of the territory, which are determined by the available amount of resource potential, expressed by the quantity and quality of land, labor and material resources. In this regard, the function of price regulation by the government should be increased. It helps to equalize the economic development of farmers and serves as a basis for improving the social conditions of rural populations, generalizing the assessment of the productive potential of farmers. Thus, innovation and R&D capacity are interrelated and complementary components of a single innovation cycle.

Science is the decisive source of economic growth, an integral component of the agrarian sphere and education, creates the necessary conditions for the realization of

the intellectual potential of the population in the field of scientific activity, provides the use of the achievements of local and world science and technology in solving social, economic and other problems.

We believe that innovation is a process that needs to be solved within a holistic system [16].

Innovation potential is linked to all components of economic potential of an agricultural enterprise. In these relationships, its essence is evident: each component of economic potential includes components of an innovative nature and thus forms the innovative potential of an agricultural enterprise. Thus, the structure of economic capacity can serve as a basis for the development of a methodology for assessing the innovative potential of agriculture.

Scientific developments to improve the efficiency of the use of agrarian potential should be based on its assessment. Otherwise, research may be misdirected and conclusions may be unreliable [17].

Scientific potential in the agrarian sphere and the features of its development depend on the degree of research and development in agriculture.

Scientific potential is considered as the sum of the resources and structures available in the country to ensure the production, acquisition and transfer of scientific and technological achievements into practical applications.

The state policy on the development of scientific potential, assistance in the creation and implementation of new technologies is closely related to innovative activities. Until enterprises are fully armed with scientific developments and high-tech equipment, it is impossible to compete with world innovation without concrete support for innovative activities. The factor of market economy development is the introduction of important and interesting investment projects, creation of conditions and environment for innovative activity, creation of an innovative market.

The tasks set to accelerate the introduction of scientific and technological achievements into the sphere should be prepared for the training of scientific personnel and their research in market conditions [18].

It is very difficult to create such opportunities and conditions in agriculture. But there are huge opportunities and reserves hidden in it. If we unveil them and determine the use of them, then real growth dynamics will emerge and scientific research will find optimal way to proceed. It is known that our country has great experience and scientific potential in the cultivation of cotton, fruits and vegetables and berries.

The tasks set to accelerate the introduction of scientific and technological achievements in the field are aimed at training scientific personnel and preparing them for market research [18].

To create such opportunities and conditions in agriculture is very complicated. But there are huge opportunities and reserves hidden in it. If we uncover them and start using them, there will be real dynamics of growth, as well as optimal way of development of research and development. It is known that our country has extensive experience and great scientific potential in growing cotton, grain, fruits and vegetables and berries.

Scientific potential shows synergistic effects aimed at solving regional development problems, creates new knowledge, teaches in practice, and provides new knowledge transfer for research [19].

Improving the quality of products with the continuity of agricultural production is necessary to enrich it with new technologies with the successful use of existing technologies. There were many cases when honored academicians Mirzaev, Usmanov and Khusanov were engaged in scientific research and creative nature in the field of agriculture. The industry has created new productive, high-quality and profitable varieties of grapes and other fruit trees and vegetables from economic issues and agricultural products. Today, there is a need to support and encourage such scientific activities as well as professional development of personnel in developed countries. In the conditions of Uzbekistan, the potential for land fertility is not fully utilized. If some indicators of agriculture in Uzbekistan and developed countries are compared, this once again finds its confirmation.

Currently, there is no clear definition of production potential in the economic literature, which is defined differently by different economists. Sometimes it is presented as a simple set of labor, material, and land resources available to the enterprise. In other words, they define the concept of resource and production potential [20].

Production potential is the collection of organically interrelated resources of agricultural production – tools, objects of labor, and labor. To some extent, this is a science-based regulatory volume of production, which reflects the possibilities of achieving results not only with the rational use of factors of production, but also with the real results of the production of enterprises and authorities with a level of cost

regulation. Agriculture as a part of the resources of production is the main and specific means of land production.

Conclusions, suggestions and recommendations

It is an important source of economic development and income growth for the population. This in many respects is due to the capacity of personnel and researchers in the agrarian sector.

In conclusion, the economy of the sphere should solve the following problems of agricultural innovation and scientific and production potential: formation of scientific potential of agriculture for scientific and technological development; Further strengthening of the production potential of agricultural scientific results of scientific activity; formation of innovative capacities for transition to the most favorable technologies for the introduction of scientific developments by farmers and peasant farms; development of production capacity in the processes of introduction of advanced and innovative technologies in the agricultural sector.

In order to expand commercialization of scientific developments in the agrarian sphere, a proposal has been developed to strengthen its scientific potential: it is necessary to stimulate the country's scientific staff to intensify innovative activities in the agrarian sector and to use its scientific potential more effectively. It is necessary to possess fundamental knowledge in this area and develop competitive scientific developments, create conditions for education and scientific and technological support of research and production processes of agriculture, as well as to conduct comprehensive research based on modern scientific achievements. Based on this, "the methods and methods developed will make it possible to assess the production potential for a number of agricultural enterprises." The proposed method is based on the need to divide the initial resources of enterprises into homogeneous clusters and calculate the efficiency of using the available resources for each of them.

We recommend the agricultural sector innovation potential as follows: innovation potential, which is a complex multifaceted, multi-variable phenomenon that requires careful and careful study. However, it is difficult to assess it in the first place because there is no single definition of this concept, which is complicated by the fact that the system of capacity indicators has not been fully developed. Therefore, the innovative potential of the sphere should be considered as the sum of the existing and newly entering means of production in agricultural production, created on the basis of

commercialization of scientific knowledge and achievements of scientific and technological development, the impact of which is formed in the process of introducing innovative technologies of agricultural production.

References

1. Resolution of the President of the Republic of Uzbekistan Sh. Mirziyoyev, No PP-4795 of July 30, 2020 "On measures to further improve the agrarian education system". UzA.– Tashkent., 30.07.2020. "Collection of laws of the Republic of Uzbekistan", August 3, 2020, No. 30, Art. 345.
2. Kokurin, D.I. Innovasionnaya deyatelnost [text]: monograph / I.D. Kokurin. – Moscow: Ekzamen, 2001. – 576 p
3. Abramov V. I. Metodologiya otsenki innovasionnogo potentsiala predpriyatiya [Methodology of otsenki innovasionnogo potentsiala predpriyatiya]. Povolzhsky region. Obtshestvennie nauki. 2012. – № 4 (24). – Pp. 130-137.
4. Imaykina O. I. Analiz innovasionnogo potentsiala predpriyatiya kak instrument opredeleniya ego vnutrennix vozmojnostey // Izvestiya vissix uchebnix zavedeniy. Povoljskiy region. Obtshestvennie nauki. 2014. – № 3 (31). – Pp. 211-214.
5. Kulagina N. A., Kozlova E. M. Osnovy otsenki innovatsionnogo potentsiala khozyaystvuyushchego sub"ekta v usloviyakh sovremennykh realiy [Basics of Assessing the Innovative Capacity of an Economic Entity in the Conditions of Modern Realities]. Transportnoe delo Rossii [Russian Transport Business], 2013, No. 6, pp. 19-20.
6. Pavlova, E.G. Innovasionniy potentsial organizasiy malogo i srednego biznesa [tekst] / E.G. Pavlova // Problemi upravleniya. 2007. – № 1. – pp. 81-88.
7. Innovasionnaya deyatelnost v agrarnom sektore ekonomiki Rossii [tekst] / I.G. Ushachyov, I.T. Trubilin, E.S. Ogloblin, I.S. Sandu. – Moskva.: Koloss, 2007. – 636 p.
8. Erina, A. E. Upravlenie nauchno-issledovatelskimi i opitno-konstruktorskimi rabotami // Sovremennoe obtshestvo, obrazovanie i Nauka; Sbornik nauchnix trudov po materialam Mejdunarodnoy nauchno-prakticheskoy konferentsii 31 iyulya 2013 g.: v 5 chastyax. Chast 1; M-vo obr. i nauki RF. - Tambov: Izd-vo TROO "biznes-Nauka-Obtshestvo", 2013. – Pp. 59-62.
9. Sozaeva T.H., Mambetova F.A. Makitova L.I. The modern development of agriculture in the conditions of realization of state programs // Economy and

Entrepreneurship. 2012. № 11. S. 20.

10. Shubaeva S.A. Employment and human capital in the conditions of development of agrarian relations // the Bulletin of the Institute of Caucasus Peoples' Friendship theory of economics and economic management. 2012. - № 2 (22). - S. 87- 90.

11. Molchanenko S.A. Priorities for economic sustainability of rural areas in the aspect of increasing employment // Sustainable Development Strategy of Russia. - 2013. - № 15. - S. 87-91.

12. Babadjanov Abdirashid Musaevich. Investment in the Water Supply and Economic Problems: Solutions. Journal of Scientific Research Reports. India. 04 August 2020. 26(6): - Pp. 100-109.

13. Zambrjiskaya, E. S. Metodicheskie podxodi k otsenke proizvodstvennogo potentsiala promishlennogo predpriyatiya / E. S. Zambrjiskaya, M. V. Logachyova, A. V. Logachyova. – Tekst: neposredstvennyi // Molodoy ucheniy. 2015. – № 10 (90). – Pp. 659-664.

14. Lomakin, A. Yu. Innovasionniy potentsial kak osnova strategii razvitiya predpriyatiya / A. Yu. Lomakin. - Text: neposredstvennyi // Problemi i perspektivi ekonomiki i upravleniya: materiali II Mejdunar. Nauch. conf. (g. St. Petersburg, June 2013). - T.0. - St. Petersburg: Renome, 2013. - pp. 111-114.

15. Zvolinsky V.P., Zvolinskaya O.V., Matveeva N.I., Alexandrova T.I. Scientific potential as a resource for managing the rural labor market. Russian Journal of Labor Economics. 2018. 5. (1). – Pp. 255-268.

DOI: 10.18334/ET.5.1.38889

16. Babadjanov A.M. Agricultural research for development: investing in Uzbekistan's future. Journal. "Agricultural Sciences", - USA.: VoI. 4, 2013. No.2, - Pp. 62-65.

17. Galikeev R.N., Gataullin R.F. Otsenka agrarnogo potentsiala kak faktora strukturizacji territoriy//Fundamentalnie issledovaniya. 2016. – № 6-2. – Pp. 366-371;

18. Babadjanov A.M. Expansion and financing of research activities in the agrarian sector. "Electronic Journal of Finance and Banking". - Tashkent: Issue V. September – October, 2019. - pp. 59-66.

19. Stukach V.F. Potentsial nauchnoy shkoli V razvitiu agrarnoy ekonomiki regiona: opit, Problemi [Potential of scientific school is in development of agrarian economy of region: experience, problems]," MPRA Paper 73653, University Library of Munich, Germany. 2016.

Global Economic Review: Journal of Economics, Policy, and Business Development
ISSN: 2980-5287
Volume 01, Issue 11, November 2025
Website: ecomindspress.com

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

-
20. Jurkina T.A. Soderjanie ponyatiya "Proizvodstvennyi potentsial" almanax sovremennoy nauki i obrazovaniya. Tambov: Izdatelstvo "Gramota", 2011. № 2 (45). - Pp. 152-154.